

Ergo documentation

Ergo [https://github.com/oughtinc/ergo] is a Python library for integrating model-based and judgmental forecasting.

Usage

	Getting Started

Prediction Platforms

	Metaculus
	Metaculus

	MetaculusQuestion

	ContinuousQuestion

	LinearQuestion

	LogQuestion

	LinearDateQuestion

	BinaryQuestion

	Foretold
	Foretold

	ForetoldQuestion

	PredictIt
	PredictIt

	PredictItMarket

	PredictItQuestion

Models

	Inference
	tag

	run

	Distributions
	normal

	normal_from_interval

	lognormal

	lognormal_from_interval

	uniform

	beta

	beta_from_hits

	categorical

	halfnormal

	halfnormal_from_interval

	random_choice

	random_integer

	flip

Contribute to ergo core

	Contribute to Ergo core
	poetry

	Before submitting a PR

	Conventions

Contribute to ergo notebooks

	Contribute to Ergo notebooks
	How to change a notebook and make a PR

	Run a notebook in Colab or JupyterLab
	Colab

	JupyterLab

	Notebook Style

	Notebook contrib folder
	Adding new packages

	Adding dependencies

Tips

	Loading data from Google Sheets
	Method 1 (Public CSV)

	Method 2 (OAuth)

	Method 3 (Service Account)

Getting Started

	To get started with a template to work from, load this Colab notebook [https://colab.research.google.com/github/oughtinc/ergo/blob/master/notebooks/quickstart.ipynb].

	For more information about ergo, see the README [https://github.com/oughtinc/ergo/blob/master/README.md].

	See the sections below to learn more about using ergo.

	To learn about contributing, read our CONTRIBUTING.md [https://github.com/oughtinc/ergo/blob/master/CONTRIBUTING.md].

Metaculus

Metaculus

	
class Metaculus(api_domain='www', username=None, password=None)

	The main class for interacting with Metaculus

	Parameters

	
	api_domain (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A Metaculus subdomain (e.g., www, pandemic, finance)

	username (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A Metaculus username (deprecated)

	password (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The password for the given Metaculus username (deprecated)

	
get_question(id, name=None)

	Load a question from Metaculus

	Parameters

	
	id (int [https://docs.python.org/3/library/functions.html#int]) – Question id (can be read off from URL)

	name – Name to assign to this question (used in models)

	Return type

	MetaculusQuestion

	
get_questions(question_status='all', player_status='any', cat=None, pages=1, fail_silent=False, load_detail=True)

	Retrieve multiple questions from Metaculus API.

	Parameters

	
	question_status (Literal [https://docs.python.org/3/library/typing.html#typing.Literal][‘all’, ‘upcoming’, ‘open’, ‘closed’, ‘resolved’, ‘discussion’]) – Question status

	player_status (Literal [https://docs.python.org/3/library/typing.html#typing.Literal][‘any’, ‘predicted’, ‘not-predicted’, ‘author’, ‘interested’, ‘private’]) – Player’s status on this question

	cat (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Category slug

	pages (int [https://docs.python.org/3/library/functions.html#int]) – Number of pages of questions to retrieve

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][MetaculusQuestion]

MetaculusQuestion

	
class MetaculusQuestion(id, metaculus, data, name=None)

	A forecasting question on Metaculus

	Parameters

	
	id (int [https://docs.python.org/3/library/functions.html#int]) – Question id

	metaculus (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Metaculus API instance

	data (Dict [https://docs.python.org/3/library/typing.html#typing.Dict]) – Question JSON retrieved from Metaculus API

	name – Name to assign to question (used in models)

	Variables

	
	activity –

	anon_prediction_count –

	author –

	author_name –

	can_use_powers –

	close_time – when the question closes

	comment_count –

	created_time – when the question was created

	id [https://docs.python.org/3/library/functions.html#id] – question id

	is_continuous – is the question continuous or binary?

	last_activity_time –

	page_url – url for the question page on Metaculus

	possibilities –

	prediction_histogram – histogram of the current community prediction

	prediction_timeseries – predictions on this question over time

	publish_time – when the question was published

	resolution –

	resolve_time – when the question will resolve

	status –

	title –

	type [https://docs.python.org/3/library/functions.html#type] –

	url –

	votes –

	
static get_central_quantiles(df, percent_kept=0.95, side_cut_from='both')

	Get the values that bound the central (percent_kept) of the sample distribution,
i.e., cutting the tails from these values will give you the central.
If passed a dataframe with multiple variables, the bounds that encompass
all variables will be returned.

	Parameters

	
	df (Union [https://docs.python.org/3/library/typing.html#typing.Union][DataFrame, Series, DeviceArray, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – pandas dataframe of one or more column of samples

	percent_kept (float [https://docs.python.org/3/library/functions.html#float]) – percentage of sample distrubtion to keep

	side_cut_from (str [https://docs.python.org/3/library/stdtypes.html#str]) – which side to cut tails from,
either ‘both’,’lower’, or ‘upper’

	Returns

	lower and upper values of the central (percent_kept) of
the sample distribution.

	
refresh_question()

	Refetch the question data from Metaculus,
used when the question data might have changed

	
sample_community()

	Get one sample from the distribution of the Metaculus community’s
prediction on this question
(sample is denormalized/on the the true scale of the question)

	
set_data(key, value)

	Set key on data dict

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	
static to_dataframe(questions, columns=['id', 'title', 'resolve_time'])

	Summarize a list of questions in a dataframe

	Parameters

	
	questions (List [https://docs.python.org/3/library/typing.html#typing.List][MetaculusQuestion]) – questions to summarize

	columns (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – list of column names as strings

	Return type

	DataFrame

	Returns

	pandas dataframe summarizing the questions

ContinuousQuestion

	
class ContinuousQuestion(id, metaculus, data, name=None)

	A continuous Metaculus question – a question of the form,
what’s your distribution on this event?

	
change_since(since)

	Calculate change in community prediction median between the argument and most
recent prediction

	Parameters

	since (datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – datetime

	Returns

	change in median community prediction since datetime

	
community_dist()

	Get the community distribution for this question
NB: currently missing the part of the distribtion outside the question range

	Return type

	PointDensity

	Returns

	the (true-scale) community distribution as a histogram.

	
community_dist_in_range()

	A distribution for the portion of the current normalized community prediction
that’s within the question’s range, i.e. 0…(len(self.prediction_histogram)-1).

	Returns

	distribution on integers

	
denormalize_samples(samples)

	Map samples from the Metaculus normalized scale to the true scale
:param samples: samples on the normalized scale
:return: samples from a distribution answering the prediction question

(true scale)

	
property has_predictions

	Are there any predictions for the question yet?

	
property high_open

	Are you allowed to place probability mass
above the top of this question’s range?

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property latest_community_percentiles

	
	Returns

	Some percentiles for the metaculus commununity’s latest rough
prediction. prediction_histogram returns a more fine-grained
histogram of the community prediction

	
property low_open

	Are you allowed to place probability mass below the bottom
of this question’s range?

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
normalize_samples(samples)

	Map samples from their true scale to the Metaculus normalized scale
:param samples: samples from a distribution answering the prediction question

(true scale)

	Returns

	samples on the normalized scale

	
property p_outside

	How much probability mass is outside this question’s range?

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]

	
prepare_logistic(normalized_dist)

	Transform a single logistic distribution by clipping the
parameters and adding scale information as needed for submission to
Metaculus. The loc and scale have to be within a certain range
for the Metaculus API to accept the prediction.

	Parameters

	dist – a (normalized) logistic distribution

	Return type

	Logistic

	Returns

	a transformed logistic distribution

	
prepare_logistic_mixture(normalized_dist)

	Transform a (normalized) logistic mixture distribution as
needed for submission to Metaculus.

	Parameters

	normalized_dist (LogisticMixture) – normalized mixture dist

	Return type

	LogisticMixture

	Returns

	normalized dist clipped and formatted for the API

	
property question_range

	Range of answers specified when the question was created

	
sample_community()

	Sample an approximation of the entire current community prediction,
on the true scale of the question.
The main reason that it’s just an approximation is that we don’t know
exactly where probability mass outside of the question range should be,
so we place it arbitrarily

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	One sample on the true scale

	
sample_normalized_community()

	Sample an approximation of the entire current community prediction,
on the normalized scale. The main reason that it’s just an approximation
is that we don’t know exactly where probability mass outside of the question
range should be, so we place it arbitrarily.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Returns

	One sample on the normalized scale

	
show_community_prediction(percent_kept=0.95, side_cut_from='both', num_samples=1000, **kwargs)

	Plot samples from the community prediction on this question

	Parameters

	
	percent_kept (float [https://docs.python.org/3/library/functions.html#float]) – percentage of sample distrubtion to keep

	side_cut_from (str [https://docs.python.org/3/library/stdtypes.html#str]) – which side to cut tails from,
either ‘both’,’lower’, or ‘upper’

	num_samples (int [https://docs.python.org/3/library/functions.html#int]) – number of samples from the community

	kwargs – additional plotting parameters

	
show_prediction(samples, plot_samples=True, plot_fitted=False, percent_kept=0.95, side_cut_from='both', show_community=False, num_samples=1000, **kwargs)

	Plot prediction on the true question scale from samples or a submission
object. Optionally compare prediction against a sample from the distribution
of community predictions

	Parameters

	
	samples – samples from a distribution answering the prediction question
(true scale). Can either be a 1-d array corresponding to one model’s
predictions, or a pandas DataFrame with each column corresponding to
a distinct model’s predictions

	plot_samples (bool [https://docs.python.org/3/library/functions.html#bool]) – boolean indicating whether to plot the raw samples

	plot_fitted (bool [https://docs.python.org/3/library/functions.html#bool]) – boolean indicating whether to compute Logistic Mixture
Params from samples and plot the resulting fitted distribution. Note
this is currently only supported for 1-d samples

	percent_kept (float [https://docs.python.org/3/library/functions.html#float]) – percentage of sample distrubtion to keep

	side_cut_from (str [https://docs.python.org/3/library/stdtypes.html#str]) – which side to cut tails from,
either ‘both’,’lower’, or ‘upper’

	show_community (bool [https://docs.python.org/3/library/functions.html#bool]) – boolean indicating whether comparison
to community predictions should be made

	num_samples (int [https://docs.python.org/3/library/functions.html#int]) – number of samples from the community

	kwargs – additional plotting parameters

	
submit_from_samples(samples, verbose=False)

	Submit prediction to Metaculus based on samples from a prediction distribution

	Parameters

	samples – Samples from a distribution answering the prediction question

	Return type

	Response

	Returns

	logistic mixture params clipped and formatted to submit to Metaculus

LinearQuestion

	
class LinearQuestion(id, metaculus, data, name=None)

	A continuous Metaculus question that’s on a linear (as opposed to a log) scale”

	
get_true_scale_logistic(normalized_dist)

	Convert a normalized logistic distribution to a logistic on
the true scale of the question.

	Parameters

	normalized_dist (Logistic) – normalized logistic distribution

	Return type

	Logistic

	Returns

	logistic distribution on the true scale of the question

	
get_true_scale_mixture(normalized_dist)

	Convert a normalized logistic mixture distribution to a
logistic on the true scale of the question.

	Parameters

	normalized_dist (LogisticMixture) – normalized logistic mixture dist

	Return type

	LogisticMixture

	Returns

	same distribution rescaled to the true scale of the question

LogQuestion

	
class LogQuestion(id, metaculus, data, name=None)

	

LinearDateQuestion

	
class LinearDateQuestion(id, metaculus, data, name=None)

	
	
date_to_timestamp(date)

	Turn a date string in %Y-%m-%d format into a timestamp. Metaculus
uses this format for dates when specifying the range of a date question.
We’re assuming Metaculus is interpreting these date strings as UTC.

	Returns

	A Unix timestamp

	
sample_community()

	Sample an approximation of the entire current community prediction,
on the true scale of the question.

	Returns

	One sample on the true scale

BinaryQuestion

	
class BinaryQuestion(id, metaculus, data, name=None)

	A binary Metaculus question – how likely is this event to happen, from 0 to 1?

	
change_since(since)

	Calculate change in community prediction between the argument and most recent
prediction

	Parameters

	since (datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – datetime

	Returns

	change in community prediction since datetime

	
sample_community()

	Sample from the Metaculus community distribution (Bernoulli).

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
score_my_predictions()

	Score all of my predictions according to the question resolution
(or according to the current community prediction if the resolution
isn’t available)

	Returns

	List of ScoredPredictions with Brier scores

	
score_prediction(prediction, resolution)

	Score a prediction relative to a resolution using a Brier Score.

	Parameters

	
	prediction – how likely is the event to happen, from 0 to 1?

	resolution (float [https://docs.python.org/3/library/functions.html#float]) – how likely is the event to happen, from 0 to 1?
(0 if it didn’t, 1 if it did)

	Return type

	ScoredPrediction

	Returns

	ScoredPrediction with Brier score, see
https://en.wikipedia.org/wiki/Brier_score#Definition
0 is best, 1 is worst, 0.25 is chance

	
submit(p)

	Submit a prediction to my Metaculus account

	Parameters

	p (float [https://docs.python.org/3/library/functions.html#float]) – how likely is the event to happen, from 0 to 1?

	Return type

	Response

Foretold

Foretold

	
class Foretold(token=None)

	Interface to Foretold

	
get_question(id)

	Retrieve a single question by its id

	
get_questions(ids)

	
	Retrieve many questions by their ids
	
	ids (List[string]): List of foretold question ids
	(should be less than 500 per request)

	Returns: List of questions corresponding to the ids,
	or None for questions that weren’t found.

ForetoldQuestion

	
class ForetoldQuestion(id, foretold, data=None)

	“Information about foretold question, including aggregated distribution

	
plotCdf()

	Plot the CDF

	
quantile(q)

	Quantile of distribution

	
sample_community()

	Sample from CDF

	
submit_from_samples(samples, length=20)

	Submit a prediction to Foretold based on the given samples

	Parameters

	
	samples (Union [https://docs.python.org/3/library/typing.html#typing.Union][ndarray, Series]) – Samples on which to base the submission

	length (int [https://docs.python.org/3/library/functions.html#int]) – The length of the CDF derived from the samples

	Return type

	Response

PredictIt

This module lets you get question and prediction information from PredictIt
via the API (https://predictit.freshdesk.com/support/solutions/articles/12000001878)

PredictIt

	
class PredictIt

	The main class for interacting with PredictIt.

	
get_market(id)

	Return the PredictIt market with the given id.
A market’s id can be found in the url of the market.

	Parameters

	id (int [https://docs.python.org/3/library/functions.html#int]) – market id

	Return type

	PredictItMarket

	Returns

	market

	
property markets

	Generate all of the markets currently in PredictIt.

	Return type

	Generator [https://docs.python.org/3/library/typing.html#typing.Generator][PredictItMarket, None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Returns

	iterator of PredictIt markets

	
refresh_markets()

	Refetch all of the markets from the PredictIt API.

PredictItMarket

	
class PredictItMarket(predictit, data)

	A PredictIt market.

	Parameters

	
	predictit (PredictIt) – PredictIt API instance

	data (Dict [https://docs.python.org/3/library/typing.html#typing.Dict]) – Market JSON retrieved from PredictIt API

	Variables

	
	predictit (PredictIt) – PredictIT API instance

	api_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url of the PredictIt API for the given question

	id [https://docs.python.org/3/library/functions.html#id] (int [https://docs.python.org/3/library/functions.html#int]) – id of the market

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the market

	shortName (str [https://docs.python.org/3/library/stdtypes.html#str]) – shortened name of the market

	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – url of the image resource of the market

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url of the market in PredictIt

	status (str [https://docs.python.org/3/library/stdtypes.html#str]) – status of the market. Closed markets aren’t included in the API, so always “Open”

	timeStamp (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – last time the market was updated.
The API updates every minute, but timestamp can be earlier if it hasn’t been traded in

	
get_question(id)

	Return the specified question given by the id number.

	Parameters

	id (int [https://docs.python.org/3/library/functions.html#int]) – question id

	Return type

	PredictItQuestion

	Returns

	question

	
property questions

	Generate all of the questions in the market.

	Return type

	Generator [https://docs.python.org/3/library/typing.html#typing.Generator][PredictItQuestion, None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Returns

	generator of questions in market

	
refresh()

	Refetch the market data from PredictIt,
used when the question data might have changed.

PredictItQuestion

	
class PredictItQuestion(market, data)

	A single binary question in a PredictIt market.

	Parameters

	
	market (PredictItMarket) – PredictIt market instance

	data (Dict [https://docs.python.org/3/library/typing.html#typing.Dict]) – Contract JSON retrieved from PredictIt API

	Variables

	
	market (PredictItMarket) – PredictIt market instance

	id [https://docs.python.org/3/library/functions.html#id] (int [https://docs.python.org/3/library/functions.html#int]) – id of the contract

	dateEnd (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – end-date of a market, usually None

	image (str [https://docs.python.org/3/library/stdtypes.html#str]) – url of the image resource for the contract

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the contract

	shortName (str [https://docs.python.org/3/library/stdtypes.html#str]) – shortened name of the contract

	status (str [https://docs.python.org/3/library/stdtypes.html#str]) – status of the contract. Closed markets aren’t included in the API, so always “Open”

	lastTradePrice (float [https://docs.python.org/3/library/functions.html#float]) – last price the contract was traded at

	bestBuyYesCost (float [https://docs.python.org/3/library/functions.html#float]) – cost to buy a single Yes share

	bestBuyNoCost (float [https://docs.python.org/3/library/functions.html#float]) – cost to buy a single No share

	bestSellYesCost (float [https://docs.python.org/3/library/functions.html#float]) – cost to sell a single Yes share

	bestSellNoCost (float [https://docs.python.org/3/library/functions.html#float]) – cost to sell a single No share

	lastClosePrice (float [https://docs.python.org/3/library/functions.html#float]) – price the contract closed at the previous day

	displayOrder (int [https://docs.python.org/3/library/functions.html#int]) – position of the contract in PredictIt. Defaults to 0 if sorted by lastTradePrice

	
refresh()

	Refetch the market data from PredictIt and reload the question.

	
sample_community()

	Sample from the PredictIt community distribution (Bernoulli).

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	true/false

	
static to_dataframe(questions, columns=None)

	Summarize a list of questions in a dataframe

	Parameters

	
	questions (List [https://docs.python.org/3/library/typing.html#typing.List][PredictItQuestion]) – questions to summarize

	columns – list of column names as strings

	Return type

	DataFrame

	Returns

	pandas dataframe summarizing the questions

Inference

tag

	
tag(value, name)

	

run

	
run(model, num_samples=5000, ignore_untagged=True, rng_seed=0)

	Run model forward, record samples for variables. Return dataframe
with one row for each execution.

	Return type

	DataFrame

Distributions

normal

	
normal(mean=0, stdev=1, **kwargs)

	

normal_from_interval

	
normal_from_interval(low, high, **kwargs)

	

lognormal

	
lognormal(loc=0, scale=1, **kwargs)

	

lognormal_from_interval

	
lognormal_from_interval(low, high, **kwargs)

	

uniform

	
uniform(low=0, high=1, **kwargs)

	

beta

	
beta(a=1, b=1, **kwargs)

	

beta_from_hits

	
beta_from_hits(hits, total, **kwargs)

	

categorical

	
categorical(ps, **kwargs)

	

halfnormal

	
halfnormal(stdev=1, **kwargs)

	

halfnormal_from_interval

	
halfnormal_from_interval(high, **kwargs)

	

random_choice

	
random_choice(options, ps=None)

	

random_integer

	
random_integer(min, max, **kwargs)

	
	Return type

	int [https://docs.python.org/3/library/functions.html#int]

flip

	
flip(p=0.5, **kwargs)

	

Contribute to Ergo core

To get started:

	git clone https://github.com/oughtinc/ergo.git

	poetry install

	poetry shell

poetry

Ergo uses poetry to manage its dependencies and environments.

Follow these directions [https://python-poetry.org/docs/#installation] to install poetry if you don’t already have it.

Troubleshooting: If you get Could not find a version that satisfies the requirement jaxlib ... after using poetry to install, this is probably because your virtual environment has old version of pip due to how poetry choses pip versions [https://github.com/python-poetry/poetry/issues/732].

Try:

	poetry run pip install -U pip

	poetry install again

Before submitting a PR

	Run poetry install to make sure you have the latest dependencies

	Format code using make format (black, isort)

	Run linting using make lint (flake8, mypy, black check)

	Run tests using make test

	To run the tests in test_metaculus.py, you’ll need our secret .env file [https://docs.google.com/document/d/1_r_DrCumtO3oKaG2BryyzanexWPiwgtrcx9fxiNBgD4/edit].
If you don’t have it, you can ask us for it, or rely on Travis CI to run those tests for you.

	Generate docs using make docs, load
docs/build/html/index.html and review the generated docs

	Or run all of the above using make all

Conventions

Import numpy as follows:

import jax.numpy as np
import numpy as onp

Contribute to Ergo notebooks

How to change a notebook and make a PR

	Open the notebook [https://github.com/oughtinc/ergo/tree/master/notebooks] in JupyterLab or Colab (Run a notebook in Colab or JupyterLab)

	Make your changes

	Follow our Notebook Style

	Run the notebook in Colab. Save the .ipynb file (with output) in ergo/notebooks

	Run make scrub. This will produce a scrubbed version of the notebook in ergo/notebooks/scrubbed/.

1. You can git diff the scrubbed version against the previous scrubbed version
to more easily see what you changed

	You may want to use nbdime [https://nbdime.readthedocs.io/en/latest/] for better diffing

6. You can now make a PR with your changes. If you make a PR in the original ergo repo
(not a fork), you can then use the auto-comment from ReviewNB to more thoroughly vet your changes

Run a notebook in Colab or JupyterLab

Colab

	Go to https://colab.research.google.com/:

	click “GitHub” on the “new notebook” dialog, then enter the notebook URL. Or:

	go to “Upload” and upload the notebooks ipynb file. Or:

	Install and use the Open in Colab Chrome extension [https://chrome.google.com/webstore/detail/open-in-colab/iogfkhleblhcpcekbiedikdehleodpjo?hl=en]

JupyterLab

	git clone https://github.com/oughtinc/ergo.git

	poetry install

	poetry shell

	jupyter lab

Notebook Style

How to clean up a notebook for us to feature:

	Make sure that the notebook meets a high standard in general:

	high-quality code

	illuminating data analysis

	clear communication of what you’re doing and your findings

	as short as possible, but no shorter

	this random style guide [https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md] I found in a few minutes of Googling
seems good, but it’s not our official style guide or anything

	Do the following specific things to clean up:

	as much as possible, avoid showing extraneous output from cells

	you can use the %%capture magic to suppress all output
from a cell (helpful if a function in the cell prints
something)

	you can add a ; at the end of the last line in a cell to
suppress printing the return value of the line

	think about what cells the reader really needs to see
vs. which ones just have to be there for setup or
whatnot. Collapse the latter.

	use the latest version of ergo

	make sure that any secrets like passwords are removed from the
notebook

	Pull out any code not central to the main point of the model
into a module in ergo/contrib/. See Notebook contrib folder for
details.

The featured notebooks in our README should be exemplars of the
above, so refer to those to see what this looks like in practice.

Notebook contrib folder

Adding new packages

For modules providing functionality specific to the questions
addressed in a notebook, create a new package in contrib
/ergo/contrib/{your_package} and include an __init__.py
file. You can then access it in your notebook with:

from ergo.contrib.{your_package} import {module_you_want}

For modules providing more general functionality of use across
notebooks (and perhaps a candidate for inclusion in core ergo), you
can use /ergo/contrib/utils. You can either add a new module or
extend an existing one. You can then access it with:

from ergo.contrib.utils import {module_you_want}

Adding dependencies

	Usual poetry way with –optional flag

poetry add {pendulum} --optional

	You can then (manually in the pyproject.toml) add it to the
‘notebook’ group

(Look for “extras” in pyproject.toml)

[tool.poetry.extras]
notebooks = [
 "pendulum",
 "scikit-learn",
 "{your_dependency}"
]

(To my knowledge) there is no way currently to do this second step
with the CLI.

This allows people to then install the additional
notebook dependencies with:

poetry install -E notebooks

Loading data from Google Sheets

Three methods for loading data from google sheets into a Colab Notebook

Method 1 (Public CSV)

If you’re willing to make your spreadsheet public, you can publish it as a CSV file on Google Sheets. Go to File > Publish to the Web, and select the CSV format. Then you can copy the published url, and load it in python using pandas.

import pandas as pd
df = pd.read_csv(url)

Method 2 (OAuth)

This method requires the user of the colab to authorize it every time the colab runs, but can work with non-public sheets

Authentication
import google
google.colab.auth.authenticate_user()
google_sheets_credentials = GoogleCredentials.get_application_default()
gc = gspread.authorize(google_sheets_credentials)

Load spreadsheet
wb = gc.open_by_url(url)
sheet = wb.worksheet(sheet)
values = sheet.get_all_values()

Method 3 (Service Account)

This method requires your to follow the instructions at https://gspread.readthedocs.io/en/latest/oauth2.html to create a google service account. You then need to share the google sheet with the service account email address.

Need a newer version of gspread than included by default in Colab
!pip install --upgrade gspread

service_account_info = {} #JSON for google service account
import gspread
from google.oauth2.service_account import Credentials

scope = ['https://spreadsheets.google.com/feeds',
 'https://www.googleapis.com/auth/drive']

credentials = Credentials.from_service_account_info(service_account_info, scopes=scope)

gc = gspread.authorize(credentials)

Load spreadsheet
wb = gc.open_by_url(url)
sheet = wb.worksheet(sheet)
values = sheet.get_all_values()

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 ergo	

 	
 	
 ergo.platforms.metaculus	

 	
 	
 ergo.platforms.predictit	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U

B

 	
 	beta() (in module ergo.distributions.base)

 	
 	beta_from_hits() (in module ergo.distributions.base)

 	BinaryQuestion (class in ergo.platforms.metaculus.question)

C

 	
 	categorical() (in module ergo.distributions.base)

 	change_since() (BinaryQuestion method)

 	(ContinuousQuestion method)

 	
 	community_dist() (ContinuousQuestion method)

 	community_dist_in_range() (ContinuousQuestion method)

 	ContinuousQuestion (class in ergo.platforms.metaculus.question)

D

 	
 	date_to_timestamp() (LinearDateQuestion method)

 	
 	denormalize_samples() (ContinuousQuestion method)

E

 	
 	
 ergo.platforms.metaculus

 	module

 	
 	
 ergo.platforms.predictit

 	module

F

 	
 	flip() (in module ergo.distributions.base)

 	
 	Foretold (class in ergo.platforms.foretold)

 	ForetoldQuestion (class in ergo.platforms.foretold)

G

 	
 	get_central_quantiles() (MetaculusQuestion static method)

 	get_market() (PredictIt method)

 	get_question() (Foretold method)

 	(Metaculus method)

 	(PredictItMarket method)

 	
 	get_questions() (Foretold method)

 	(Metaculus method)

 	get_true_scale_logistic() (LinearQuestion method)

 	get_true_scale_mixture() (LinearQuestion method)

H

 	
 	halfnormal() (in module ergo.distributions.base)

 	halfnormal_from_interval() (in module ergo.distributions.base)

 	
 	has_predictions() (ContinuousQuestion property)

 	high_open() (ContinuousQuestion property)

L

 	
 	latest_community_percentiles() (ContinuousQuestion property)

 	LinearDateQuestion (class in ergo.platforms.metaculus.question)

 	LinearQuestion (class in ergo.platforms.metaculus.question)

 	
 	lognormal() (in module ergo.distributions.base)

 	lognormal_from_interval() (in module ergo.distributions.base)

 	LogQuestion (class in ergo.platforms.metaculus.question)

 	low_open() (ContinuousQuestion property)

M

 	
 	markets() (PredictIt property)

 	Metaculus (class in ergo.platforms.metaculus)

 	MetaculusQuestion (class in ergo.platforms.metaculus.question)

 	
 	
 module

 	ergo.platforms.metaculus

 	ergo.platforms.predictit

N

 	
 	normal() (in module ergo.distributions.base)

 	
 	normal_from_interval() (in module ergo.distributions.base)

 	normalize_samples() (ContinuousQuestion method)

P

 	
 	p_outside() (ContinuousQuestion property)

 	plotCdf() (ForetoldQuestion method)

 	PredictIt (class in ergo.platforms.predictit)

 	
 	PredictItMarket (class in ergo.platforms.predictit)

 	PredictItQuestion (class in ergo.platforms.predictit)

 	prepare_logistic() (ContinuousQuestion method)

 	prepare_logistic_mixture() (ContinuousQuestion method)

Q

 	
 	quantile() (ForetoldQuestion method)

 	
 	question_range() (ContinuousQuestion property)

 	questions() (PredictItMarket property)

R

 	
 	random_choice() (in module ergo.distributions.base)

 	random_integer() (in module ergo.distributions.base)

 	refresh() (PredictItMarket method)

 	(PredictItQuestion method)

 	
 	refresh_markets() (PredictIt method)

 	refresh_question() (MetaculusQuestion method)

 	run() (in module ergo.ppl)

S

 	
 	sample_community() (BinaryQuestion method)

 	(ContinuousQuestion method)

 	(ForetoldQuestion method)

 	(LinearDateQuestion method)

 	(MetaculusQuestion method)

 	(PredictItQuestion method)

 	sample_normalized_community() (ContinuousQuestion method)

 	
 	score_my_predictions() (BinaryQuestion method)

 	score_prediction() (BinaryQuestion method)

 	set_data() (MetaculusQuestion method)

 	show_community_prediction() (ContinuousQuestion method)

 	show_prediction() (ContinuousQuestion method)

 	submit() (BinaryQuestion method)

 	submit_from_samples() (ContinuousQuestion method)

 	(ForetoldQuestion method)

T

 	
 	tag() (in module ergo.ppl)

 	
 	to_dataframe() (MetaculusQuestion static method)

 	(PredictItQuestion static method)

U

 	
 	uniform() (in module ergo.distributions.base)

 nav.xhtml

 Table of Contents

 		
 Ergo documentation

 		
 Getting Started

 		
 Metaculus

 		
 Metaculus

 		
 MetaculusQuestion

 		
 ContinuousQuestion

 		
 LinearQuestion

 		
 LogQuestion

 		
 LinearDateQuestion

 		
 BinaryQuestion

 		
 Foretold

 		
 Foretold

 		
 ForetoldQuestion

 		
 PredictIt

 		
 PredictIt

 		
 PredictItMarket

 		
 PredictItQuestion

 		
 Inference

 		
 tag

 		
 run

 		
 Distributions

 		
 normal

 		
 normal_from_interval

 		
 lognormal

 		
 lognormal_from_interval

 		
 uniform

 		
 beta

 		
 beta_from_hits

 		
 categorical

 		
 halfnormal

 		
 halfnormal_from_interval

 		
 random_choice

 		
 random_integer

 		
 flip

 		
 Contribute to Ergo core

 		
 poetry

 		
 Before submitting a PR

 		
 Conventions

 		
 Contribute to Ergo notebooks

 		
 How to change a notebook and make a PR

 		
 Run a notebook in Colab or JupyterLab

 		
 Colab

 		
 JupyterLab

 		
 Notebook Style

 		
 Notebook contrib folder

 		
 Adding new packages

 		
 Adding dependencies

 		
 Loading data from Google Sheets

 		
 Method 1 (Public CSV)

 		
 Method 2 (OAuth)

 		
 Method 3 (Service Account)

_static/file.png

_static/minus.png

_static/plus.png

